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• Transition metal complex (TMC)
• Molecular system with complicated electronic structure  
• Provides challenges for improving computational modeling tools

• Density functional theory (DFT)
• One of the most popular computational electronic structure methods
• Computationally efficient, reliable accuracy, not computationally costly
• Many flavors of density functionals, select one appropriate for chosen chemical 

system of study
• Problem
• DFT for TMCs is prone to predictive performance inaccuracies
• Motivates development of new electronic structure methods

• Approaching a solution
• Search for TMCs in which various functionals are expected to disagree the most, as 

these would be the most interesting to investigate for future scientists who develop 
new electronic structure methods 
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Fig. 1 - The vast chemical space of transition metal complexes.
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Fig. 3 - Uniform manifold approximation and projection (UMAP) of TAE calculated by 
selected functionals (DSD-PBEB95-D3BJ, BLYP, PBE, and B3LYP).
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• Fine-tuned neural networks for each functional agree that TMCs in which 
functionals have the highest disagreement (i.e. largest value of α) are 
TMCs in which TAE has a smaller absolute value (Fig 3).

• The uncertainty plot (Fig. 4a) illustrates that a majority of model errors 
(> ~0.1 absolute error) are 1σ (denoted by the green dashed line) away 
from the mean.

• While latent model distribution plots for MD1+OHLDB train -
MD1+OHLDB test (green) and MD1+OHLDB train – MD1+OHLDB
train (blue) are both highly concentrated above -0.1σ, MD1+OHLDB –
CSD (red) broadly spans 0.5σ, suggesting unreliable model performance. 
This may be due to the small fine tuning set (150 TMCs), which is 
expected to be expanded in future work (Fig. 4b).

Given TMCs whose TAE resulted in large α, apply an active 
learning scheme to screen entire Cambridge Structure Database 

(CSD) chemical space for TMCs with those values of TAE.
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Fig. 1 (a) - Using a functional flavor to compute TMC properties. (b) With model weights 
given by the property computed by Functional A, network learns TMC revised auto-

correlations (RACs) and predicts how other functionals would compute the same TMC
property.

Fig. 2 - α measures how much functionals disagree with each other on a TMC property (as 
predicted by the neural network). TMCs in which α is large are of great interest.
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Fig. 4 (a) - Uncertainty plot for absolute error of fine-tuned neural network models. (b) 
Latent space distribution plots comparing MD1+OHLDB and CSD.
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